

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. Re-Examinations June 2016

Max. Marks: 100 Class: T.Y. B.Tech. Semester: VI Name of the Course: *Hydraulic Engineering-II*

Instructions:

Duration: 03 Hours Program: Civil Engineering Course Code : CE353

Master file.

- L Attempt Any Five questions
- 2. All questions carry equal marks
- 3 Answer to each question to be started on the fresh page
- 4. Assume suitable data if necessary and mention it clearly.
- 5. Draw neat diagrams.
- 6.

Question		Maxim <u>um</u> Marks	Course Outco me	Module No.	
No.			Numb er		
QI	(a) Explain with neat sketches velocity distribution in:(i) smooth pipes and (ii) rough pipes.	(10)	CO1	01	
	(b) Average point velocities measured with the help of a pitot tube at mid point and quarter point of a 25 cm diameter pipe were found to be 1.50 meter/sec and 1.30 meter/sec respectively. If the flow in the pipe is turbulent, determine the discharge, friction factor and average height of roughness projections.	(10)			
Q2	 (a) Define the terms: (i) boundary layer (ii) boundary layer thickness (ii) drag force (iv) lift force and (v) momentum thickness. (b) For a velocity distribution (u/U) = 2(Y/δ) - (Y/δ)² find displacement thickness, boundary layer thickness, momentum thickness and energy thickness. 	(10) (10)	CO1	02	
Q3	(a) Discuss: Stream lined bodies, bluff bodies, Friction drag and pressure drag with neat sketches.	(10)	CO4	03	-
	(b)What is Magnus effect? Explain the phenomenon in detail.	(10)			
Q4	 (a) Explain significance of specific energy curve in channel flow. (b) Design most economical trapezoidal channel section for a discharge of 20 cu.m. per sec, bed slope of channel is 1 in 1550 	(10)	CO2	04	
	and Manning's constant = 0.018. Take side slope as 1H: 1V.	(10)			

ΡΤΟ

Q5	(a) Explain: (i) Venturiflume, (ii) Broad crested weir.(b) Classify: hydraulic jump and derive an expression for loss of energy in hydraulic jump.	(10) (10)	CO3	05/06
Q6	(a) Derive the dynamic equation for GVF for a wide rectangular channel. Also explain the flow profiles in mild sloped channel.	(10)	CO3	06
	(b) A 3 m wide rectangular channel conveys 8 cum/sec of water with a velocity of 4 m/sec. Is there any condition for hydraulic jump to occur? If so, calculate the height and length of the jump. Also determine the energy loss.	(10)		
Q7	(a) Explain primary quantities and derived or secondary quantities and dimensionless quantities used in dimensional analysis.	(10)	C O5	07
	(b) The head loss due to friction 'hf' in a pipe depends upon diameter of pipe 'D', friction factor 'f', length of pipe 'L' and rate of flow through pipe 'Q'. Obtain an expression for loss of head using Buckingham's- π method.	(10)		

РТО

Lib Sector) 2116/2016

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re Examination

June 2016

Max. Marks: 100 Class: T. Y. B. Tech. Semester: VI Name of the Course: Geotechnical Engineering II Duration: 3 hours Program: Civil Course Code: CE351

Instructions:

- 1. Question No. 1 is compulsory.
- 2. Attempt any four out of remaining six questions.
- 3. State clearly any assumptions made and state units for all quantities.
- 4. Assume suitable data if necessary and state the same clearly.

2. I	No.		Max. Marks	fer file Course Outcome Number	Module No.
	a	Explain the advantages and disadvantages of concrete piles	05	1	4
	a b	Explain the filtering and drainage function of geosynthetics	05	2	7
	+	Compare Rankine's and Coulomb's earth pressure theories.	05	1	1
	c d	Classify conduits and illustrate a positive projecting conduit with a neat sketch.	05	1	5
2	a	A group of 16 piles having a diameter of 500 mm are placed 1m center to center. The piles are placed in clay (cohesion 30 kN/m ²) and are 9 m long. Determine the ultimate bearing capacity of the pile group if end bearing is neglected and adhesion factor is assumed to be 0.6	10	1	4
	b	Explain the different modes of failure of shallow foundations with neat sketches.	05	1	3
	c	Why are joints necessary in retaining walls. Explain the different types of joints with neat sketches	05	2	2
3	a	A retaining wall is 9m high and retains dry sand with $\phi=33^{\circ}$. If the top 3m of sand has γ (kN/m ³) = 21 and below that is γ (kN/m ³) = 27, calculate the magnitude and point of application of the resultant active earth pressure.	10	1	1
	b	Explain the plate load test in detail as per IS1888.	10	1	3
4	a	What are the stability requirements of a retaining wall? Derive an expression for factor of safety against overturning.	10	2	2
	b	Illustrate with a neat sketch the distribution of pressures for a sheet pile wall in cohesive soils	05	1	6

Page 1 of 2

	c	Explain the importance of ground water level on determining	05	с т 1	3
		the bearing capacity of shallow foundations.			
5	a	A wall footing is to rest on a soil having the following properties: c $(kN/m^2) = 25$, ϕ (degrees) = 35, $\gamma_d(kN/m^3) = 18.9$ and $\gamma_{sat}(kN/m^3) = 19.9$. Determine the safe load on a 1.5m wide footing placed at 1.3 m below the ground surface if water table is located at 2 m below ground surface. Use IS code recommendations and neglect depth factors. Assume FOS as 2.5	05	1	3
	b	If in the above problem, the wall footing is replaced by a footing of 1.3 in x 1.3 m size and if ground water rises to GL, what will be the safe load?	05	1	3
	c	Write a short note on negative skin friction in pile foundations.	05	1	4
	d	Differentiate between active and passive earth pressure.	05	2	1
6	a	Determine the safe load on a flexible pipe with outside diameter of 100cm which is to be laid in a trench 1.2m wide and backfilled by clay 4 m high having unit weight of 18.3 kN/m ³ . Assume c _d = 3.4	05	1	5
	b	With the help of neat sketches, show the proportioning of gravity type and cantilever type retaining walls.	05	1	1
	c	State advantages and disadvantages of sheet piles	05	1	6
	d	Illustrate with a neat sketch a geosynthetic reinforced soil slope and highlight the main components.	05	1	7
7	a	A 400 mm diameter pile is 8 m long and is driven into a sandy deposit having a friction angle of 34 degrees, $\gamma_b(kN/m^3) = 16.2$ and $\gamma_{sat}(kN/m^3) = 18.3$. Considering Nq = 29 k=1.2 and $\delta =$ (2/3) ϕ , calculate the ultimate load the pile can carry if the ground water is 3 m below ground surface.	10	1	4
	b	Explain settlement ratio of a positive projecting conduit. Illustrate with a neat sketch projection condition	05	1	5
	c	Draw the typical pressure distribution for a sheet pile wall retaining cohesionless soil. Clearly show the dredge line	05	1	6

Librery 240101711

SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

Re-examination June-July 2016

Max. Marks: 100Duration: 3 HrsClass: T.Y. B. TechSemester: VIName of the Course: Environmental Engineering IProgram: B. Tech CivilCourse Code: CE 355Master file.Instructions:Master file.Q1 is compulsory and attempt any four questions out of remaining sixDraw neat sketches/diagrams wherever requiredAssume suitable data if necessary and state them clearlyFigure on right indicate maximum marks for the given question, course outcomes attained and module no.

of questions

Q1 (a)	Fill in the blanks	d are	the coagu	lants used i	n water tro	eatment. and	(20) (10)	CO1- CO4	М.1 То М.7
	 Two meth 3. 	and	00001 01 D 01	are tw	o method	s to remove salts in			
	water treat								
	٨	is the	law of min	imum					
	5	is use	d to remov	e salinity if	water.				
	6	process	is used to	clean rapid	sand filte	ſ			
	7	is a n	aturally occ	curring ion	exchange.				
	9 nU of alka	line water is	5						
	0 A sustion of	f water rem	OVES	and	1	P			
	10. Hazardou	s waste can	be defined	by	anc				
							(05)	COI	M.1
(b)	Explain ozone d	epletion	ical pyrami	ids			(05)	C O1	M.2
(c)	Explain ecology	and ecolog	icai pyraini	10.5					
~	Answer of follo	wing anest	ions				(20)	CO1	М.3
Q2 (a)		casting is to treatment fa	be done facility. The	data avana	ore is laou	n for the year 2040 to lated below. Use three	(10)	CO1, CO4	
			1980	1990	2000	2010			
	Year	1970	42000	48000	50000	56000			
	Population Explain the phy	40000	42000	logical pro			(10)	CO1	M.4
(b)	Explain the phy	sical, chem	ival allu UK	No Brown bro	r				1 of 2

Q3 (a)	Answer the following questions Explain water supply scheme and discu	uss their importance.	(10)	CO2, CO3	M3, M4
(b)	Draw, explain and predict efficiency for	or conventional surface water treatment	(150	CO1- CO4	M.4
Q4 (a)	 Answer the following questions a) Explain process of flocculation b) Design a paddle flocculator for Detention time= 20 min Average G= 50s⁻¹ Speed of paddles = 6 rpm K=0.25 μ =1.0087X10⁻³ ρ=998 kg/m³ at 20°C 	on. r 16 MLD plant with following details:	(20) (10)	CO2- CO4	M.5
(b)	Ratio of $I_{B} = 2.0$ Assume of	her dimensions if required. n a circular settling tank for 3MLD water	(10)	CO2- CO4	M.5
Q5 (a)	Answer the following questions Explain construction and working of t	rapid sand filters	(10)	CO1- CO4	M.5
(b)	Explain the concept of pressure and n	nultimedia filters with diagram	(10)	CO3, CO4	M.5
Q6 (a)	Explain with short notes Water softening	(b) Aeration	(20) (10)	C01- C03	M.6
(c)	Disinfection	(d) Deflouridation	(10)	CO1- CO4	M.6
Q7 (a) (b) (e)	Answer the following questions (an Explain solid waste and the managen Explain the process of pyrolysis Explain soil pollution and ways to rea	nent of the same in Indian context.	(10) (05) (05)	CO4 CO4 CO2	M.7 M.7 M.2

lib Seehn 18/5/2016

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

End Semester Exam May - June 2016

Max. Marks: 100 Class: T.Y. B. Tech

Name of the Course: Environmental Engineering I

Course Code: CE 355

Instructions:

Attempt any five questions out of seven

Draw neat sketches/diagrams wherever required

Assume suitable data if necessary and state them clearly

Duration: 3 Hrs

Semester: VI

Program: B. Tech Civil

Figure on right indicate maximum marks for the given question, course outcomes attained and module no. of questions

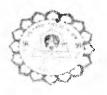
Q1 (a) (b)	Answer of follo State and explai Draw and expla	in Leibig	's law of ketch of r	itrogen an	d carbo	n cycle?	-		(20) (05) (10)	CO3 CO3	M.1 M.1
(c)	Explain classifi prevent noise p		t noise w	ith source	es, effec	ts of noi	se and me	asures to	(05)	CO4	M.2
Q2	Answer of follo	•••							(20)		
(a)	A town of Ram is to be develo provided in tabl be designed using	ped for t le 1. Calc	he area f ulate the	or the yea population	r 2040 . 1 for wh	The past ich water	t census red supply sys	cords are	(05)	CO1, CO4	M.3
	Table 1.										
	Year	1980	1990	2000	2010	2020					
	Population	6,000	7,500	8,000	9,000	10,00	00				
(b)	As a city engine a growing city.							dered for	(10)	CO1, CO2	M.3
(c)	Explain the test water sample ar					biologic	al characte	ristics of	(05)	CO1	M.4
Q3	Answer the fol	lowing a	uestions								
(a)	Explain the mai			ater treat	nent De	liberate o	on methods		(05)	CO2,	M3,
()	/technologies w								(00)	CO3	M4
(b)	For the city of surface water characteristics of	Ramgarh • source	as menti and g	ion <mark>e</mark> d in Q round w	2(a) the ater s	ource. I	Deliberate	on the	(15)	CO1- CO4	M.4
										1	of 3

Master file.

each water source. **Describe** the function of each unit in the flowsheet. **Comment** on the efficiency of each unit with respect to relevant characteristic.

		(20)		
Q4 (a)	Answer the following questions Explain process of coagulation. Design (dimensions and power requirement)	(10)	CO2- CO4	M.5
(b)	rapid mixing unit for the population for the year 2020 for ranight a water demand of 150 lpcd. Give suggestion on alternative to rapid mixing. Explain theory of filtration and actions causing filtration. Design rapid sand filter for (size and underdrainage system) for the population for the year 2020 for Ramgarh town having water demand 150 lpcd.	(10)	CO2- CO4	M.5
Q5	Answer <u>any two</u> of the following questions Explain the concept Ideal Settling Tank. Design ideal settling tank for the	(10)	CO1- CO4	M.5
(a)	Explain the concept Ideal Setting Tank. Design ideal of the population for the year 2020 for Ramgarh town having water demand 150 lpcd. Explain with short notes : (a) Backwashing (b) Breakpoint chlorination	(10)	CO3, CO4	M.5
(b) (c)	Explain the characteristic of a good disinfectant. Explain disinfectants used in water treatment. Find chlorine consumed in kg/day and chlorine dosage in mg/L for the city of Ramgarh in 2020 if the residual chlorine is 0.2 mg/L and a chlorine	(10)	CO3, CO4	M.5
	for the city of Ramgarn in 2020 if the residual chief			
	demand is 0.6 mg/L.	(20)		
Q6 (a)	Answer the following questions Explain ion exchange process for water softening. For Ramgarh water sample contains following impurities as shown in table 2. Compute annual requirements of slaked lime and soda for the year 2020 for Ramgarh town having water demand 150 lpcd. Purity of slaked lime is 80% and soda is 90%	(10)	C01- C03	M.6
	Table 2: $NaCl= 25 mg/L$			
	$MgCl_2 = 100 mg/L \qquad Mig (11CO3)2 mod Mg/L$		COL	- M.6
	Side rome to high amount of color, odour and huorides.	(10)	C01	
(b)	Ramgarh's surface water source has figh amount of color, output to solve the As a city engineer explain any two techniques you would incorporate to solve the aforesaid problems	8		
Q	the state the state and techniques to use them	(05)		M.7 M.7
(8	 Explain Hazardous wastes and teorningere Explain incineration process with figure Explain incineration process with figure 	(05) s (05)		M.7
(b	- 1 A -howing functional links of solid wastes when	\$ (03)		
(c	affecting generation rate	(05)		M. 7
(d	Explain landfill with a figure Explain landfill with a figure	(05)		M.2
(6	The noise levels at $L_{100}, L_{80}, L_{60}, L_{40}, L_{20}$ and L_{3} are code, every start out Lavg., Leq and 80db respectively, measured during an hour of the day. Find out Lavg., Leq			
	and NC at the location.			

2 of 3


• 1

Formula Sheet

	A1-27	WI P-O/P
$[r]^n$	Al=27	WLR=Q/B
$P_n = P_o \left 1 + \frac{r}{100} \right $	Ca=20	WLR= $Q/2\pi R$
	C=12	DT = V/Q
- n(n+1) -	O=16	$SOR = 12-20 \text{ m}^3/\text{d/m}^2$
$P_n = P_o + n\overline{x} + \frac{n(n+1)}{2}\overline{y}$	S=32	$SOR = 24-30m^{3}/d/m^{2}$
2	Cl=35.5	
$\log_e \left[\frac{P_s - P}{P} \right] - \left[\frac{P_s - P_o}{P_o} \right] = -kP_s * t$	H=1	
$\log_{e} \left \frac{1_{s}}{2} \right - \left \frac{1_{s}}{2} \right = -kP_{s} * t$	Na=23	
$[P] [P] [P_o]$		
$P = (P + n\overline{x})$	Fe= 55.5	
$P_n = (P_o + n\bar{x})$	Mg=24	
$r = \sqrt{r_1 * r_2 * r_3 * \dots * r_n}$	Si=14	
SA=volume/SOR	G =300-700s ⁻¹	$P = \frac{1}{2} C_d \rho. A_p. v_r^3$
SA Volume/SOR	0.5 min to 1 min	4
		$C_d = 1.8$ for flat paddles
		$\rho = 998 kg/m^3$
		$v_r = (1 - 0.25)v_p$
Ratio of length to diameter of lateral ≤ 60	1 a	
Ratio of length to traineter of lateral ≤ 00	$v_s = \frac{1}{10} \frac{g}{g} (S_s - 1)$	Q/A; Q/ perimeter; Q/b; V/Q
	$18v^{-1}$	Q/A; Q/perimeter; Q/0; V/Q
Spacing of laterals= spacing of orifices= 150	* d ²	$V = D^2 (0.011D + 0.785H)$
to 300 mm		
	Value of	
Dia of perforations 5 to 12 mm	$v=1.002 \times 10^{-6} \text{ m}^2/\text{sec}$	
(spacing 80 mm for 5 and 200 mm for	v _d	
12mm)		50
Total area of perforations≤ 0.5	$\binom{8\beta}{2}$	
	$= \sqrt{\left(\frac{8\beta}{f'}\right)(S_s - 1)dg}$	
Total c/s area of laterals		
	f' = 0.025 - 0.03	
<u>Total area of perforation = 0.002 to 0.003</u>	$g=9.8 m/s^2$	
Entire filter area		
Area of manifold= 1.5 to 2 times laterals		
Rate of filtration = 300 to $5001/hr/m^2$		1
Rate of filtration = $3000-60001/hr/m^2$	1	
Max. demand= 1.8 Q		
Man, domand 1.0 Q		
	+	
C = P		$G * t = \frac{V}{Q} * \sqrt{\frac{P}{\mu V}} = \frac{\sqrt{\frac{PV}{\mu}}}{Q}$
$G = \sqrt{\frac{1}{\mu * V}}$		$G * t = -\frac{1}{0} \sqrt{\frac{1}{\mu V}} = \frac{1}{0}$
$\psi \mu i$		× Yr ×
$\mu = 1.0087 * 10^{-3} \text{Ns/m}^2$	<u> </u>	

3 of 3

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. END SEM May- 2016

Max. Marks: 100 Duration: 3 hr Class: TY-Btech Name of the course: Theory of RC and Prestressed concrete.

Q.P. Code: CE 356 Course Code : CE 356 Sem-VI Program: Civil Engineering

Instructions:

- 1) Question No. 1 is compulsory
- 2) Attempt any FOUR from the remaining questions.
- 3) Use of IS 456:2000 is permitted.
- 4) Assume data wherever necessary and draw reinforcement details wherever necessary.
- 5) Figures to right indicate full marks.

Master file.

	estion No		Maximum Marks	Course Outcome
	a)	A short column 300mm x 300mm is reinforced with 4 bars of 20 mm diameter .Determine the safe working load on the column. Use M-20 and Fe-415	05	Number
1)	b)	Explain the necessity of using high strength concrete and high tensile steel in prestressed concrete.	05	2
	c)	Name different methods of post tensioning. Explain any one method in detaial.	05	2
	d)	Derive expression for the position of neutral axis and moment of resistance of balanced rectangular section.	05	1
_2)	a)	Design a doubly reinforced rectangular beam having size 230mmx450mm effective. The beam is supported over clear span of 4m, carrying udl of 12kN/m. Adopt M20 and Fe 415	15	1
1	b)	what are the assumptions in working stress method?	05	1
3.))-	Design simply supported slab of a room having internal dimensions $4mx5m$. The corners are to be held down. Take L.L as 3 kN/m^2 and floor finish as 1.5 kN/m^2 . Use M20 and Fe-415. Draw reinforcement details showing bottom plan and section along long span and short span. Give appropriate checks.	20	1

			A reinforced concrete Tee beam has the following dimensions: Flange width:2000mm; Width of rib:300mm; Depth of rib:700mm	10	
	Ð	a)	Depth of flange: 120mm Steel provided:6 bars of 25mm diameter Span:8m		1
			Use M20 and Fe-415. Find safe udl beam can carry.		
		b)	A simply supported beam of span 6m and dimensions and dimensions 250mmx600mm effective carries a udl of 30kN/m. The beam is reinforced with 5 bars of 20mm diameter. Design shear reinforcement. Adopt M25 and Fe 415.	10	1
			An unsymmetrical I section beam is used to support an imposed load of 3kN/mover a span of 8m. The sectional details are: Top flange-300mm wide and 60		
5)	 a)		Bottom flange-100mm wide and 60mm thick Overall depth of beam is 400mm At the centre of span, effective prestressing force of 100kN is located at 50mm from soffit of beam.Determine stresses at centre span section of the beam for the following conditions: 1) Prestress+ self weight	10	_2
	b) a)	al or ur th fri De	2) Prestress+ self weight+ live load A post tensioned concrete beam is prestressed by a circular cable aving area of 800mm2 with zero eccentricity at ends and 150mm t centre. The span of beam is 10m. The cable is to be stressed from ne end such that an initial stress of 900N/mm2 is available in the njacked end immediately after anchoring. Determine the stress in e wires at jacking end and the percentage loss of stress due to iction. μ =0.6 and k=0.003/m.	10	2
		rei De	sign a short rector culture that 700mm. Use spiral	12	1
		and A	prestressed concrte beam (1 beam) has two 2	08	1
	h a p Ea in	i 80 navi erci s=2 itia	x2000mm(depth of web).The beam is prestressed with wires ing area of 300mm2 located at 50mm from soffit and carrying nitial stress of 1200N/mm2.Span of beam is 10m.Calculate entage loss of stress in wires if beam is a) Pretensioned b) Post tensioned 00kN/mm2;Ec=35kN/mm2;Relaxation of steel stress=5%of	20	2
_	sli	p=1	10^{-6} for post tensioning. Creep coefficient=1.6.Anchorage lmm. μ =0.6 and k=0.0015/m.		

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam May 2016

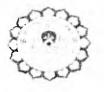
Max. Marks:100 Class: T. E. Semester: VI Name of the Course: Transportation Engineering - II Duration: 3 hours Program: Civil Course Code: CE354

Master file.

1. Question No 1 is compulsory.

- 2. Attempt any four questions out of remaining six.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary

Que.		Marks	CO
No Q1	write short notes on (Solve any Four)		
(a)	Different type of joints of cement concrete pavement.		
(b)	Temperature Stress in Rigid Pavement		
(c) (c)	Difference between Flexible and Rigid Pavement	20	1,2,3
(d)	Desirable Properties of Subgrade soils.		
(e)	Explain different type of traffic signs.		
(f)	Grade-separated intersection		
Q2			
(a)	Discuss with sketch construction procedure of highway embankment	07	03
	Define the term WBM. How will you construct WBM type subbase and Base of	07	03
(b)	Flexible Pavement	06	03
(c)	Discuss Different failure of Flexible pavement		
Q.3		10	1
(a)	Explain in detail the complete procedure started from map study to location survey required for locating new highway		
(b)	The existing flexible pavement was tested using Benkelman Beam with a test vehicle of ESWL 4085 and tyre pressure of 5.6 kg/cm ² . The observations recorded at a pavement temperature of 40° c are given bellow. 1.46, 1.52, 1.56, 1.76, 1.96, 1.74, 1.68, 1.74, 1.96, 1.42, 1.56, 1.62, 1.68, 1.90, 1.89 Calculate the thickness of bituminous concrete overlay to be provided over the existing pavement. Assume following data, (i) allowable deflection = 1.25 mm, (ii) subgrade moisture content = 1.2, (iii) Use IRC approach for overlay design.	10	3
Q.4.		- 05	2
(a)	Discuss assumptions' made in Burmister two and Three Layers Theory.	05	$\frac{2}{2}$
(b)	Two Lane single carriageways carries a traffic of 1200 commercial vehicle per day, rate of growth of traffic is 7 %, period required for construction of road after last count is 4	08	


	years. Design life of the pavement is 15 years. Calculate the cumulative number of standard axle for a highway passing through (i) plain area (ii) Hilly area.		
(c)	Design a pavement section by triaxial method using following data: Wheel load = 4100 Kg, Radius of contact area = 15 cm, traffic coefficient = 1.5, rainfall coefficient = 0.9, design deflection = 0.25 cm, E- Value for subgrade = 60 kg/cm ² , E- value for base = 225 kg/cm ² , assume 7.5 cm thickness bituminous layer to be provided at the top of base course having E- value 1100 kg/cm ² . Also, draw a section of Pavement	'07	2
Q.5.			
(a)	Use of Geotextile and Geogride in Highway Construction.	06	3
(b)	Enlists the different test to be carried out on Road aggregate. Explain any one in detail.	07	2
(c)	An ascending gradient of 1:25 meets another ascending gradient of 1:100. Find the length of summit curve to be provided for required SSD. Assume design speed = 80 km/hr.	07	<u>_</u> 1
Q.6.			
(a)	What are the factors to be consider while selecting the bridge site.	06	2
(b)	What is Afflux and Scouring depth. Explain its importance in bridge construction.	07	3
(c)	A bridge has a linear waterway of 150 m across a stream whose natural waterway of 220 m. If the average flood discharge is 1200 m ³ / sec, average flood depth is 3 m. calculate afflux under the bridge.	07	2
Q.7			
(a)	Discuss Different types of survey to be carried out for Origin and Destination study.	10	1
(b)	The speed range and corresponding number of vehicles are given draw the frequency curve and determine (i) Upper and lower value of speed limits for traffic regulation. (ii) Speed for geometric design. (Refer Table No. 1)	10	1

• •

Т	abl	e ľ	Ňo	1

Speed range (kmph)	Number of vehicles	Speed range (kmph)	Number of vehicles
0-10	12	50-60	255
10-20	18	60-70	119
20-30	68	70-80	43
30-40	89	80-90	33
40-50	209	90-100	09

lib seem 13/57207 r

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Examinations May 2016

Max. Marks: 100 Class: T.Y. B.Tech. Semester: VI Name of the Course: Hydraulic Engineering-II

Instructions:

Course

Module

Duration: 03 Hours Program: Civil Engineering Course Code : CE353 Masterfile.

Maximum

- 1. Attempt Any Five questions 2 All questions carry equal marks
 - 3 Answer to each question to be started on the fresh page
- 4. Assume suitable data if necessary and mention it clearly.
- 5. Draw neat diagrams.

Question No.		Marks	Outcome Number	No.
Ql	 (a) Explain Causes of turbulence, mechanism of turbulence and Reynold's stresses in pipe flow. (b) Derive an expression for velocity distribution for turbulent flow in smooth circular pipe and hence derive the expression for velocity distribution in terms of average velocity. 	(10) (10)	CO1	01
Q2	(a) Derive: Von-Karman momentum integral equation. State its use. (b) What is effect of pressure gradient on boundary layer separation? (c) For the velocity profile of $(u/U_0) = 2\eta - \eta^2$, Where $\eta = (y/\delta)$. Calculate Boundary layer thickness;	(06) (06) (08)	CO1	02
Q3	 (a) Write short note on; (i) Circulation and Magnus effect; (ii) Streamlined and bluff bodies. (b) Find the difference in the drag force on a flat plate of size 2 meter x 2 meter when the plate is moving at a speed of 6 meter/sec, normal to its plate when; (i) moving in water and (ii) moving in air of density 1.25 kg/m³. Take coefficient of drag as 1.10. 	(06) (06) (08)	CO4	03
Q4	(a) What do you understand by hydraulically efficient channel? Derive an expression for hydraulically efficient triangular channel. (b) In a rectangular channel prove that; for a critical state of flow: $V/Vg.y = 1$, where V = velocity of flow, g = acceleration due to gravity and y=	(06) (06)	CO2	04
	 a flow in the channel. (c) Design most economical trapezoidal channel section for a discharge of 25 cu.m. per sec, bed slope of channel is 1 in 2500 and Manning's constant = 0.020. Take side slope as 1H = 1V. 	(08)		

Q5	(a) Explain with neat sketch: Venturiflume. (b) Explain: flow profiles in case of mild sloped channel. (c)Derive: differential equation for gradually varied flow. State	(06) (06) (08)	CO3	05/06
	assumptions clearly.			3
Q6	 (a) Define Hydraulic jump and derive expression for loss of energy in it. (b) Explain: Waves and surges in open channels. (c) Determine the length of back water curve caused by afflux of 1.25 m in a rectangular channel width 45 m and depth 2.0 m The slope of the bed is given as 1 in 2250. Take Manning's N = 0.025. 	(06) (06) (08)	CO3	06
Q7	 (a) What do you understand by Dimensional homogeneity? Explain. (b) Explain the term distorted and undistorted models and scale effects in model studies. (c) Obtain an expression for the critical depth 'Yc' in a rectangular channel which depends on a discharge 'Q', gravitational acceleration g, and angle of channel 'θ' using any dimensional analysis method 	(06) (06) (08)	CO5	07

*

- X - I

Max. Marks: 100

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Exam

May 2016

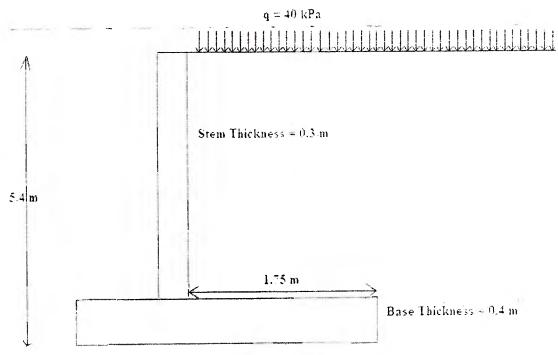
Duration: 3 hours

Class: T. Y. B. Tech. Semester: VI Name of the Course: Geotechnical Engineering II Program: Civil Course Code: CE351 Master file.

Instructions:

- 1. Question No. 1 is compulsory.
- 2. Attempt any four out of remaining six questions.
- 3. State clearly any assumptions made and state units for all quantities.
- 4. Assume suitable data if necessary and state the same clearly.

Q.	No.		Max. Marks	Course Outcome Number	Modu No.
1	a	State how pile foundations are classified as per IS:2911	05	1	4
	b	 Explain the following terms related to conduits. Projection condition Oritical plane Settlement ratio 	05	1	5
	c	Draw the typical pressure distribution for a sheet pile wall retaining cohesionless soil. Clearly show the dredge line.	05	2	6
	d	Draw a typical cross-section of a MSEW.	05	1	7
2	a	Explain the pile load test as per IS: 2911	10	1	4
	b	Calculate the resultant active thrust for a 5 m high retaining wall that retains sandy backfill with sloping backfill at 15° , $\phi=32^{\circ}$ and $\gamma=16.86$ kN/m ³ . Assume the back of the wall as vertical and smooth. Will you use Coulomb's theory or Rankine's theory? Justify your choice.	05	2	1
	c	A contractor at a site is refusing to put adequate drainage behind a retaining wall. Convince him why an appropriate drainage system is necessary.	05	2	2
3	a	Explain the conditions under which local shear failure of soil under a shallow footing may take place. Estimate the factor of safety against shear failure of soil with c= 0.12 kg/cm ² , ϕ =26 ^o and γ = 1.76 g/cc, if it is supports a wall footing of width 1.2 m at a depth of 1 m below the ground surface. The actual load on the footing is 24t per meter length of the wall. Use IS:6403 recommendations and neglect depth factors. Comment on the adequacy of the factor of safety and provide recommendations	10	1	3


Page 1 of 3

		if applicable. Refer to Table 1 for Bearing capacity factors.	<u>,, , , , , , , , , , , , , , , , , , ,</u>	,	J
	b	In a two layered cohesive soil, bored piles of 45cm diameter are installed. The top layer has a thickness of 4.5 m and the bottom one is of considerable depth. The undrained cohesion of the top and bottom layers is 45 kN/m ² and 100 kN/m ² respectively. Determine the length of the bored pile required to carry a load of 350kN, using a factor of safety of 2.0 and $\alpha =$ 0.5.	05	1	4
	c	What is settlement ratio of a conduit? Illustrate with a neat sketch, incomplete ditch condition of a negative projecting conduit	05	1	5
	a	A 7 m high retaining wall retains soil having c=16 kN/m ² , ϕ =18° and γ =16.2 kN/m ³ . The backfill is horizontal and carries a surcharge of 20 kN/m ² . Draw the active pressure when tension cracks occur and when they do not occur. Determine the magnitude and point of application of the resultant thrust.	10	2	1
	b	Explain in detail the procedure to estimate the embedment depth of a sheet pile wall retaining purely cohesive soil. Illustrate with neat sketches	10	2	6
	8	Proportion the area of a combined footing for two columns A and B using the following data. The allowable soil pressure is $70kN/m^2$ and the columns are spaced 3 m center to center. The footing should not extend 0.5m beyond center of column A. Show the arrangement with all dimensions.ColumnABSize $0.3m \times 0.3m$ 0.4m $\times 0.4m$	10	1	3
	b	Load 500 kN 1000kN Explain the construction of imperfect ditch conduit with neat distribute	05	1	5
	c	sketchesWhat are the various functions of geosynthetics? Explain any one in detail.	05	2	7
	a	A 50cm diameter pile with length of 15m, is driven into a deposit of sand having $\phi=32^{\circ}$, $\gamma_b=17.2$ kN/m ³ and $\gamma_{sat}=18.2$ kN/m ³ . Assuming critical depth as 15d, ground water table at a depth of 2.5m below ground surface, N _q =32 and k.tan δ as 1.13, estimate the safe load the pile can carry. Use separate suitable factors of safety for skin friction and end bearing and explain why separate factors of safety are recommended.	10	1	4
	b	State how results from a plate load test are interpreted. For a sandy soil. Explain the limitations of a plate load test	05	- 1	3
-	c	Explain the procedure for estimating active earth pressure by Culmann's graphical method	05	1	1
	a	Determine the maximum and minimum pressure under the base of a cantilever retaining wall shown in Fig. 1. The soil parameters are $c= 0$, $\phi=40^{\circ}$ and $\gamma= 17$ kN/m ³ and the angle of	10	2	2

Page 2 of 3

	friction at the base may be taken as 30° . Assuming $\gamma_{\text{concrete}} = 23.5 \text{kN/m}^3$ and no friction between soil and stem of wall, also estimate the factor of safety against sliding.			
b	Differentiate between the three zones of failure when soil fails in general shear mode	05	1	3
c	Differentiate between active pressure, passive pressure and at rest pressure	05	1	1

Fig 1. Question 7a

Base Width = 3m

¢	Nc	Nq	Ν _γ	¢	N _c	Nq	Nγ
14	10.37	3.59	2.29	26	22.25	11.85	12.54
16	11.63	4.34	3.06	28	25.8	14.72	16.72
18	13.10	5.26	4.07	30	30.14	18.40	22.4
20	14.83	6.40	5.39	32	35.49	23.18	30.21
22.	16.88	7.82	7.13	34	42.16	29.44	41.06
24	19.32	9.60	9.44	36	50.59	37.75	56.31

Table 1. Question 3a

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End semester exam November 2015 / May 2016

Max. Marks: 100 Class: T.E Name of the Course: DDSS

Semester: VI

Q. P. Code: Duration: 4 hr Program: Civil Course Code : CE352

Master file.

Instructions:

- 1. Q.1 is compulsory. Attempt four out of remaining six questions.
- 2. Assume suitable data wherever necessary and state it clearly.
- 3. Figures to the right indicate full marks.
- 4. Use of IS 800-2007 and Steel table is allowed.

Q.1 The truss shown in the figure has end A as hinged and end G as 20M roller support. Member loads are as follows. Member DD (kN) LL (kN) WL (kN) CH 6 (C) 6 (C) 25 (T) CD 22 (T) 22 (T) 80 (C) Design these members considering proper partial safety factor and combination and bolted connection. Draw details of joint 'C'. 14 J Ţ Sm H С F F В 6@ 2.5m

Q.2	For a floor system shown in figure. Design dealins D2, D5 and D1	20M
	laterally supported. Consider	
	1) $LL = 5 \text{ kN/m}^2$	
	2) Total dead load = 4 kN/m^2	
	External beams supports 150 mm thick brick wall of height 3 m.	
	Take unit weight of concrete and brick as 25 kN/m^3 and 20 kN/m^3	
	respectively.	
	1.5m	
	B4 ISM	
	B4 J.S.M	
	B3 1.5M	
	<u>B2</u>	
	1.5m	
	nd nd the	
	t 4m t 4m t	
Q.3	Design the built up column with two channels toe to toe. The length of the member is 8 m with both the ends hinged, it carries	20 M
Q.3	Design the built up column with two channels toe to toe. The	20 M
Q.3 Q.4	Design the built up column with two channels toe to toe. The length of the member is 8 m with both the ends hinged, it carries 1200 kN load. The channels are connected by single lacing. Design the lacing system. Draw neat sketches showing plan and	20 M
	Design the built up column with two channels toe to toe. The length of the member is 8 m with both the ends hinged, it carries 1200 kN load. The channels are connected by single lacing. Design the lacing system. Draw neat sketches showing plan and	20 M 08M

.

,

.

Q.5		Ì
a)	Design single unequal angle section to resist factored tensile load of 600kN. Consider M20 bolts of grade 4.6 for connection.	10M
b)	Design slab base and concrete pedestal for ISHB 450 @92.5 kg/m. the column has an effective depth of 6m. consider M15 and S.B.C of soil as 275 kN/m ²	10M
Q.6 a)	Design a beam with 6.5 m effective span carrying working load of 50 kN/m including the self weight of the beam. The overall depth of the beam is restricted to 500 mm. the compressive flange of the beam is laterally supported.	14M
b)	How section classification (plastic, compact, semi-compact & slender) is done w.r.t moment-rotation curve.	6M
Q. 7		
a)	A bracket plate 10 mm thick is welded to flange of column using 8 mm fillet weld as shown in figure calculate the safe load on bracket. Also calculate % increase in the load carrying capacity if fourth side was also welded.	20M
	400 400	

*** BEST OF LUCK ***

